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Abstract

The finite element (FE) simulation method has recently been used as an alternative design tool in powder metallurgy

(PM) industry. It allows for the prediction of density and stress distributions in the pressed compact prior to the actual

tooling design and manufacturing activity. It thus makes possible the validation of the PM part and associated tooling

design. However, the accuracy of FE prediction highly depends on the choice of an appropriate and well calibrated

powder material model, as well as on the effectiveness of the computational environment. While the first point was

presented in a previous work, the present paper addresses some computational aspects of compaction process modeling

approach in the context of industrial production environment.

Hence, this paper presents a discussion of the choice of stress and strain measures used in this large deformation

context. It also presents the implementation of the cap constitutive model into ABAQUS FE software using the closest

point projection algorithm. Furthermore, an integrated simulation module has been developed and is described herein.

This module, designed in order to render the modeling approach practical and industrially attractive to PM engineers,

permits an easy definition of the tooling and the powder geometry, as well as the prescription of compaction sequence

and all other boundary conditions.

Finally, the simulation of the compaction of an industrial PM part, intended to illustrate the usefulness of the

simulation approach in the task of improving the design of PM part and process, is presented. � 2002 Published by

Elsevier Science Ltd.
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1. Introduction

Due to its numerous technological and economic advantages, powder metallurgy (PM) is a fast evolving
manufacturing process (Lenel, 1980). However, due to the complex powder deformation mechanisms oc-
curring during the compaction process, density gradients are often present in pressed parts (Bockstiegel,
1968). These gradients are the main causes of part distortion during the subsequent process of sintering and
may even lead to part fracture during its ejection from the compaction die. Thus, part and tooling design is
a very delicate task. Except for routine parts, for which PM engineers have developed extensive know-how,
this task is traditionally performed through expensive trial and error approach. Thus, more efficient al-
ternatives are still to be settled.

Therefore, the finite element (FE) simulation method has recently been used as such an alternative
design tool in PM industry. It allows for the prediction of density and stress distributions in the pressed
compact prior to the actual tooling design and manufacturing activity. It thus makes possible the vali-
dation of the PM part and associated tooling design (German, 1984). However, the accuracy of FE pre-
diction highly depends on the choice of an appropriate and well calibrated powder material model, as well
as on the effectiveness of the computational environment. In fact, in order to correctly model the com-
paction problem, such an environment should permit a reliable and practical representation of the model
boundary conditions and should adequately handle the three involved nonlinearities, i.e.: the geometric
nonlinearity associated with the large displacements, the material nonlinearity related to the elastic–plastic
behavior of the powder material and finally, the contact nonlinearity related to friction between tools and
powder.

In a previous paper (Chtourou et al., 2001), the cap material model, traditionally used for hard and
nonductile powder was chosen and adapted for metal powders. The same paper presented an experimental
calibration methodology and its application for the case of 316L stainless steel powders, as well as an
experimental procedure for the validation of the model simulation results.

The present paper addresses some computational aspects of compaction process modeling approach in
the context of industrial production environment. First, we justify the choice of stress and strain measures
used in this large deformation context and we succinctly present the basic equations of the cap material
model. Then, we present the integration algorithm used to implement the cap model in ABAQUS FE
software through the user’s material subroutine. Subsequently, in order to render this modeling approach
practical and industrially attractive to PM engineers, an integrated simulation module has been developed
and is described herein. This module permits an easy definition of the tooling and the powder geometry, as
well as the prescription of compaction sequence and all other boundary conditions. It also handles FE
solution and result post-processing. Finally, the simulation of the compaction of an industrial PM part,
intended to illustrate the usefulness of the simulation approach in the task of improving the design of PM
part and process, is presented.

2. Material modeling

2.1. Strain and stress measures

Let B 2 Rn, n ¼ 2,3 and Bt ¼ /tðBÞ be respectively the reference and the current configuration of the
body under consideration and where function /t maps reference points X of B onto current points
x ¼ /tðX Þ 2 Bt, i.e. /t describes the deformational motion of body B. We also introduce a time like interval
½0; T � such that t 2 ½0; T � is to be understood as a monotonically increasing parameter describing the evo-
lution of the deformation process.
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To describe the inelastic response in metal plasticity applications, we follow Kr€ooner (1960), Lee and Liu
(1967) or Mandel (1971) and introduce the multiplicative split of the deformation gradient, F ðX Þ ¼
o/tðX Þ=oX , into elastic part F e and plastic part F p:

F ðX ; tÞ ¼ F eðX ; tÞF pðX ; tÞ ð1Þ
An appropriate definition of strain rate is then be introduced by considering the spatial velocity gradient

l which is then expressed as

l ¼ _FF � F �1 ¼ _FF e � F e�1 þ F e � ð _FF p � F p�1Þ � F e�1 ¼ le þ F e � ðlpÞ � F e�1 ð2Þ

Using the polar decomposition of F e into the elastic rotation tensor Re and the left stretch tensor V e (i.e.:
F e ¼ V e � Re) and assuming, as usual for most metals undergoing large deformation, that the elastic strain is
negligible compared to the plastic strain, it is then reasonable to consider the elastic stretch tensor V e to be
given by V e ¼ Iþ ee where ee is the infinitesimal elastic strain tensor. Following Lee and Liu (1967), we take
F e ¼ V e and by neglecting higher order infinitesimal quantities, one can arrive at the usual approximation
of metal plasticity (Eq. (3)), where sym[�] denotes the symmetric part of a tensor and where d, de and dp

denote respectively the total, the elastic and the inelastic strain rate tensors.

sym½l� ¼ d ffi de þ dp ð3Þ
As a stress measure, we consider, the Kirchoff stress tensor s which is an energy conjugate stress measure

associated with d. Hence, the rate of internal work in the current configuration will be written as:
_WWint ¼

R
Bt
ðs � dÞdv (Peric et al., 1992; Simo, 1992; Simo and Ortiz, 1985). However, since the elastic strains

are very small, it is common to approximate the Kirchoff stress by the true Cauchy stress since these two
tensors are related by: s ¼ det F ej jr (HKS, 1995b).

2.2. Cap material model

The cap model is a multisurface elastoplasticity permitting the representation of densification, hardening
as well as inter-particle friction. It was originally developed for rocks, soils and other geological materials
(Chtourou et al., 1995a; Chtourou et al., 1996; Dimaggio and Sandler, 1971). Due to the similarities in
behavioral response of geological materials and some hard metal powders, this model was adopted and
used to simulate the cold die compaction of tungsten carbide powder (Crawford and Lindskog, 1983;
Weber and Brown, 1989). This kind of model was chosen in the present study because of the great flex-
ibility it has shown in modeling all the compaction stages, especially the early ones (Trasorras et al., 1989).
Provided some adjustments are performed (Weber and Brown, 1989; Gurson and Posteraro, 1992),
this model is suitable for the simulation of the compaction of ductile powders able to attain higher den-
sity ranges. Box 1 succinctly presents the main features of the cap model in terms of J1, the stress
first invariant, and of s, the norm of the stress deviator S defined by S ¼ r � ðJ1=3Þ1 (Dimaggio and
Sandler, 1971; Trasorras et al., 1989; Sandler and Rubin, 1979; Chtourou et al., 1995b; Hofstetter et al.
1993).

Box 1. Summary of the used multisurface plasticity cap model for powder compaction.

1. Stress–strain relationship (Hyperelastic compressible granular solid):

r ¼ Cee ¼ Cðe � epÞ with C ¼ o2w
oe2

¼ 2GðqÞIþ KðqÞ
�

� 2GðqÞ
3

�
1� 1
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where w is an hyperelastic free energy, C is the fourth order elasticity tensor, �II and 1 are respectively
the fourth and second order identity tensors, G and K are the shear and bulk moduli expressed in
terms of the powder relative density q.

2. Multi-yield surface
(a) Surface tension limit:

f1ðrÞ ¼ T � J1 ¼ 0 for J1 < �T

(b) Shear failure surface:

f2ðrÞ ¼ s� FeðJ1Þ ¼ 0 for � T 6 J1 6LðkÞ

with:

FeðJ1Þ ¼ a � ce�bJ1 þ hJ1 and LðkÞ ¼ k if k 
 0
0 if k6 0

�

(c) Cap hardening surface:

f3ðr;KÞ ¼ FcðJ1; s; kÞ � FeðkÞ ¼ 0 for LðkÞ6 J1 6X ðkÞ

with:

FcðJ1; s;KÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

R2
J1 � LðkÞ½ �2

r

and variable aspect ratio:

RðqÞ ¼ X ðkÞ � k
Fe kð Þ

where k is the internal state variable representing material hardening whereas T , a, b, c and h are
material parameters and X ðkÞ the intersection of the cap and J1 axis.

3. Evolution equations
(a) Flow rule:

_eep ¼
X
i¼1;3

_kki
ofiðr; kÞ

or

(b) Hardening law:

epv X ðkÞ½ � ¼ W ð1� e�DX ðkÞÞ with epv ¼
epv if _eepv P 0 or if k > 0 and k > J1
0 otherwise

�

(c) Updating of density:

q ¼ q0e
�epv

where _kki is the plastic consistency parameter associated with the yield surface function fi, W and D
are material parameters and q0 is the initial loose state density.
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3. Numerical implementation

3.1. Solution of the nonlinear finite element problem

The compaction process is assumed to be a quasi-static transformation with the final spatial distribution
of density ðqðxÞÞ as the driving unknown (Weber and Brown, 1989; Trasorras et al., 1989; Koopman et al.,
1992). Every material point undergoes finite strains deformation and elastoplastic transformations take
place under the interaction of the powder medium and the tooling components. The corresponding non-
linear structural FE analysis involves integration of the differential elastoplastic equations in time and
space. The time integration in the present context is due to the discretization of the loading history, while
the spatial integration is normally performed via Gauss quadratures at the FE level and then assembled in
terms of the mechanical degrees of freedom.

A nonlinear solver based on the Newton–Raphson method (HKS, 1995b; Dhatt and Touzot, 1984) has
been used. This choice is motivated by the presence of strong nonlinearities and the desired quadratic rate
of convergence. The used scheme thus required the updating of the consistent tangent stiffness at each
iteration and the use of the algorithmic tangent material operator (Simo and Ortiz, 1985). Hence, at the end
of each time step, the current stress state satisfies in the weak sense the equilibrium of the mechanical system
with the external forces and complies with the full consistency of the elastoplastic material and frictional
contact formulation.

3.2. Numerical integration of the cap model

At the core of the nonlinear FE solver resides the constitutive driver for integrating the rate form of the
elastoplastic constitutive relations in a finite time step Dt between times tn and tnþ1. The problem is thus
formulated as follows: Given the initial data at an integration point ðrn; epn ; knÞ at time tn, and assuming that
we are also given the total strain increment Denþ1 corresponding to the displacement values unþ1 (best
iterative guess at current iteration), one must then obtain the new values of the state variables ðrnþ1;
epnþ1; knþ1Þ satisfying the yield criteria and deduce values of the dependent variables such as stresses snþ1 at
time tnþ1 (Chorin et al., 1978). The incremental integration scheme is then a two-phase process that checks
first whether plastic loading takes place by evaluating the yield function at the trial stress state (elastic
prediction). In case of plastic loading, the flow direction and the magnitude of the incremental plastic
multiplier are subsequently determined using full consistency at tnþ1.

The first numerical simulations using the cap model were based on the algorithm proposed by Sandler
and Rubin (1979). This algorithm was found to be not fully consistent with the principles of plastic
consistency and associativity of the flow rule and was then corrected for these limitations (Simo et al.,
1988a). Hofstetter et al. (1993) have then proposed an improved formulation of the cap model yield
functions in order to ensure a better numerical stability of the model. They also derived a consistent ex-
pression of an algorithmic elastoplastic tangent moduli which is required in order to preserve the qua-
dratic rate of convergence in a Newton–Newton solution technique. An improvement and adaptation of
the work of reference Hofstetter et al. (1993) to the case of ductile powder compaction modeling is pre-
sented below.

3.2.1. Incremental formulation in the constitutive driver
For a typical finite time step Dt ¼ tnþ1 � tn, one usually applies the Euler backward algorithm to the

evolution equations (Box 1) which then transform into the following general discrete evolution equations
(Simo, 1992; Simo et al., 1988b):
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enþ1 ¼ en þ Denþ1 ð4Þ
epnþ1 ¼ epn þ Depnþ1 ð5Þ
knþ1 ¼ F ðkn;Depnþ1Þ ð6Þ

with:

Depnþ1 ¼
X3
i¼1

Dkiorfiðr; kÞ ð7Þ

where Dki is the increment of the plastic consistency parameter and where Depnþ1 is the tensor of plastic
strain increment.

The stress tensor rnþ1 can then be deduced from the constitutive relation as

rnþ1 ¼ C : eenþ1 ð8Þ

For pressure sensitive yield functions, it is necessary to decompose the involved stress and strain into
their spherical and deviatoric parts. For strain increment tensors, we have:

Depnþ1 ¼ 1
3
ðDIp1 Þnþ11þ Depnþ1 ð9Þ

Denþ1 ¼ 1
3
ðDI1Þnþ11þ Denþ1 ð10Þ

and for the Cauchy stress tensor, this decomposition can be written as

rnþ1 ¼ 1
3
J11þ dev½r� ¼ 1

3
ðJ1Þnþ11þ snþ1 ð11Þ

where e ¼ dev½e�, I1 ¼ tr½e� ¼ 3ev and s ¼ dev½r�, J1 ¼ tr½r� ¼ 3p with p being the pressure.
The rest of the process comprises the two main phases: an elastic predictor phase followed by a plastic

phase when applicable.

3.2.2. Elastic prediction
In this stage, one assumes that the time step increment is totally elastic, or in other words that the plastic

flow is frozen during the step and hence set Dkiðnþ1Þ ¼ 0. This results in the so called trial state:

epnþ1
T ¼ epn ; kTnþ1 ¼ kn; with enþ1 ¼ en þ Denþ1 ð12Þ

Using constitutive equations (Box 1), we can deduce the trial dependent variables. The so called trial
stress is defined by (Eq. (13)) which, in terms of its hydrostatic and deviatoric parts, results in Eqs. (14a) and
(14b):

rT
nþ1 ¼ C : enþ1

�
� epn

	
¼ C : een

�
þ Denþ1

	
¼ rn þ C : Denþ1 ð13Þ

JT
1;nþ1 ¼ J1;n þ 3KDev;nþ1 ð14aÞ

sTnþ1 ¼ sn þ 2GDenþ1 ð14bÞ

If, all of the yield criteria are satisfied for these trial values, i.e. if fiðrT
nþ1; k

T
nþ1Þ6 0 for all i 2 1; . . . ; 3ð Þ

with ðDkiÞTnþ1 ¼ 0, the process is elastic; so the trial values of the state variables in (Eq. (12)) can be accepted
as the final values at time tnþ1. Otherwise, if fbðrT

nþ1; k
T
nþ1Þ > 0 for some b 2 1; 2; 3ð Þ, the process is plastic

and we must enforce the plastic consistency condition by determining the active yield function for which
ðDkbÞnþ1 > 0 (Simo et al., 1988b).
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3.2.3. Detection of active mode and plastic correction
One of the difficult task in multisurface plasticity is the accurate determination of the active mode and

the transition from one mode to another (singular cases). At each load increment, only one of six possible
modes can be active. The trial stress state is used to evaluate a trial value of the different yield functions. If
only one yield surface is active (i.e. if for only one c 2 1; 2; 3ð Þ, we have ðDkcÞnþ1 > 0, then the condition
fcðrT

nþ1; k
T
nþ1Þ > 0 does imply that ðDkcÞnþ1 > 0) so that the c-constraint is active.

However, when several yield surfaces are active, condition fcðrT
nþ1; k

T
nþ1ÞP 0 does not imply that

ðDkcÞnþ1 > 0 since we may have fcðrT
nþ1; k

T
nþ1ÞP 0 but fcðrnþ1; knþ1Þ < 0. In that case, a corner mode is

concerned and involves the intersection of two yield surfaces.
In addition to the elastic mode and to the three modes related to the three yield surfaces, two singular

modes thus result from the nonsmooth intersection of these surfaces (Fig. 1). These are the singular
compressive mode (4) and the singular tensile mode (2). A general procedure for determining the active
yield surfaces is then based on a systematic enforcement of the discrete Kuhn–Tucker conditions. Using the
assumption of the convexity of the yield surfaces, it can be shown (Hofstetter et al. 1993, Simo et al., 1988a)
that if all of the trial values of the yield functions are negative, the load is totally elastic and the trial stress
state corresponds to the real state:

f T
inþ1

< 0; 8i ¼ ð1; 2; 3Þ ) Dki ¼ 0; 8i ¼ ð1; 2; 3Þ i ¼ ð1; 2; 3Þ ð15Þ

Instead, if one of the trial values of the yield functions is positive, the loading is elastoplastic and one
of the plastic modes is necessarily active. In that case, the elastic stress predictor is larger than the real
stress state and a plastic correction must be performed. This is done by a correction procedure, also
called return mapping algorithm, done by normally projecting the trial stress to the tension, shear and
cap surfaces as shown in (Fig. 2) after evaluating the plastic strain increment required to update the stress
state:

Jnþ1 ¼ JT
nþ1 � 3KDIpnþ1 ð16aÞ

snþ1 ¼ sTnþ1 � 2G Depnþ1

� 	
ð16bÞ

The stress conditions of each one of the plastic modes is presented in Box 2 together with the corre-
sponding values of the increments of plastic consistency parameters. These values are then used to deter-
mine the plastic strain increment (Eq. (7)) and thus the real stress state (Eqs. (14a) and (14b)).

It should be noted that the cap mode is the only one involving strain hardening. Therefore, its numerical
treatment is more delicate and will be detailed in the next section.

Fig. 1. Different modes of the cap model.
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Box 2. Boundaries and plastic consistency parameters of the plastic modes.

3.2.4. Cap mode treatment
As for the other modes, the application of the general flow rule to the function f3 of the cap mode allows

for the determination of the plastic strain increment:

Depnþ1 ¼ Dk3nþ1

snþ1

Fcðsnþ1; Jnþ1; knþ1Þ
ð17aÞ

DIpnþ1 ¼ 3Dk3nþ1

Jnþ1 � knþ1

R2Fcðsnþ1; Jnþ1; knþ1Þ
ð17bÞ

These quantities are then introduced into the relation between trial and real stress states (Eqs. (14a) and
(14b)) together with the plastic consistency condition ðf3nþ1ðr; kÞ ¼ 0Þ. However, since the yield function
undergoes hardening that makes the state variable k to attain a new undetermined value knþ1, we thus have
an additional unknown. Therefore, in order for the problem to be completely defined, a new relation must

Mode Stress state boundaries Incremental consistency parameters

1 JT
nþ1 6 T and sTnþ1 6 FeðT Þ Dk1nþ1 ¼

T�JTnþ1

9K ; Dk2nþ1 ¼ 0 and Dk3nþ1 ¼ 0

2
JT
nþ1 6 T

FeðT Þ < sTnþ1 < FeðT Þ þ
T�JTnþ1

dFeðT Þ=dJð Þ

(
Dk1nþ1 ¼

sTnþ1
�FeðT Þ
2G Dk2nþ1

¼ T�JTnþ1

9K � dFeðT Þ
dJ

sTnþ1
�FeðT Þ
2G

Dk3 ¼ 0

3

JT
nþ1 6 kn

FeðT Þ þ
T�JTnþ1

dFeðT Þ=dJð Þ < sTnþ1

sTnþ1 < FeðknÞ þ
kn�JTnþ1

dFeðknÞ=dJð Þ

8>><
>>: Dk1 ¼ 0, Dk2nþ1 ¼

sTnþ1
�FeðJnþ1Þ
2G [Jnþ1 previously

obtained by NR solution of the combination of
Eqs. (14a) and (14b) and (f2ðrÞ ¼ 0Þ� Dk3 ¼ 0

4
JT
nþ1 6 kn

sTnþ1 > FeðknÞ þ
kn�JTnþ1

dFeðknÞ=dJð Þ

(
Dk1 ¼ 0 Dk2nþ1 ¼

kn�JTnþ1

9K dFeðknÞ=dJð Þ

Dk3nþ1 ¼
sTnþ1

�FeðknÞ
2G � kn�JTnþ1

9K dFeðknÞ=dJð Þ

5
LðknÞ < JT

nþ1 6X ðknÞ
sTnþ1 > FcðJT

nþ1Þ

�
or JT

nþ1 > X ðknÞ Dk1 ¼ 0 Dk2 ¼ 0 Dk3nþ1 ¼
R2DIpnþ1

Feðknþ1Þ
3JTnþ1

�9KDIpnþ1
�3knþ1

(see details in cap mode treatment)

Fig. 2. Closest point projection in the different plastic modes.
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be introduced. This corresponds to the incremental form of the hardening law obtained by an implicit Euler
integration scheme between tn and tnþ1:

DIpnþ1 ¼ W eDX ðknÞ
�

� eDX ðknþ1Þ
	

ð18Þ

Thus, the problem is reduced to a single scalar nonlinear equation in knþ1 (Eq. (19)) that can be solved by
a local Newton–Raphson iterative method. Once this new position of the cap is determined, the plastic
strain and the real stress state can be computed (Hofstetter et al. 1993; Simo et al., 1988a).ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sTnþ1Fe knþ1ð Þ
Fe knþ1ð Þ þ 2GDk3nþ1

� �2
þ JT

nþ1 � knþ1

Rþ 9KDk3nþ1

RFe knþ1ð Þ

2
4

3
5

2
vuuut ¼ Fe Knþ1ð Þ ð19Þ

3.2.5. Computation of elastoplastic tangent moduli
The last step of the numerical integration of the constitutive evolution equations is concerned with the

determination of the algorithmic material contribution of the powder medium to the FE tangent stiffness
matrix. This contribution is computed at the integration point level and is called the elastoplastic tangent
moduli. In order to preserve a quadratic rate of convergence for the global FE problem, this moduli should
be derived from the algorithmic and not from the continuum mechanics formulation (Chtourou et al., 2001;
Simo, 1992; Simo and Ortiz, 1985). In fact, this material tangent moduli corresponds to the stress variation
caused by an infinitesimal strain variation:

Hep ¼ drnþ1

denþ1

ð20Þ

It is determined by a simple derivation of the stress strain relation (Eq. (21)). This formulation requires
the determination of the plastic strain variation. This can be done through (Eq. (22)) if the active mode
involves no strain hardening and through (Eq. (23)) if the active mode is the cap mode. Details of this
derivation procedure are given in Appendix A whereas the integration algorithm main steps are summa-
rized in Box 3.

drnþ1 ¼ C : ðdenþ1 � dep
nþ1
Þ ð21Þ

depnþ1 ¼
X
i

dðDkiÞ
ofi
or

�
þ Dki

o2fi
or2

: dr

�
ð22Þ

dep
nþ1

¼ dðDk2Þ
ofi
or

þ Dk2

o2fi
or2

: dr

�
þ o2fi
orok

: dk
�

ð23Þ

Box 3. Numerical integration algorithm of the cap model.

Step 1: Elastic prediction

Assume plasticity is frozen at the level reached at time tn and consider the strain increment to be totally
elastic, then find a trial stress state: rT

nþ1 ¼ rn þ �CC : Denþ1 using the elasticity tensor �CC.

Step 2: Finding active mode

Use the trial stress state to evaluate the different yield functions and find out the active mode among
those shown in Fig. 1.
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4. Integrated simulation module

4.1. Overview

In order to make the simulation of powder compaction an attractive design tool, an integrated simu-
lation module has been developed for axisymmetric applications. A general 3D version is currently under
development. This module is mainly intended to facilitate and to automate some of the tedious modeling
related tasks. It is composed of the I-Deas Master Series CAD software (SDRC, 1994), the ABAQUS

nonlinear FE solver (HKS, 1995b), the ABAQUS-Post post-processing (HKS, 1995a) software and finally
IDEQUSIDEQUS (Chtourou et al., 1995a): an in-house developed pre-processing and interfacing program. The
module layout, as well as the main functions of its components, is described in Fig. 3.

4.2. Pre-processing

The pre-processing is first performed through I-Deas in which the component geometries are defined and
then meshed with four node quadrilateral axisymmetric elements using a semi-automatic mapped pattern.
User defined macro functions, implemented into I-Deas, are then used for the selection and the identifi-
cation of the special boundary regions of the powder cavity and tooling components. As shown in Fig. 4,
this essentially consists in the identification of:

• Sets of nodes at the extremity of tooling components, intended for the prescription of boundary condi-
tions of the imposed displacement type.

• Powder cavity element sets at the boundary with tooling components together with tooling component
element sets at the boundary with powder cavity intended for the prescription of contact conditions.

Step 3: Elastic updating (if elastic mode is detected)

• Set the stress state equal to the trial stress state
• Leave the state variable unchanged
• Set the elastoplastic tangent moduli equal to the elasticity tensor
• Go to step 6

Step 4: Plastic correction (if one of the plastic modes is detected)

• Combine the following conditions in a scalar equation that is nonlinear in the plastic consistency
parameter Dki and solve it by a local Newton–Raphson scheme:

• Stress–trial stress relationship rn ¼ rT
nþ1 � �CC : Depnþ1

• Plastic flow rule Dep ¼
P

i¼1;3 Dki
ofiðr;kÞ

or
• Hardening rule Depv ¼ f ðkÞ (only for the cap mode)
• Consistency condition: fiðr; kÞ ¼ 0
• Once Dki is found, compute and update the consistent plastic strain increment, the stress and all

other state variables.

Step 5: Compute the resulting consistent algorithmic elastoplastic tangent moduli

Step 6: Return to the main program
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Large displacement contact with Coulomb friction was adopted for the interface regions between the
powder cavity and tooling component sides. Moreover, since very small powder sliding occurs on punch
faces, tied (sticking) contact was adopted for the these interface regions. The friction coefficient was as-
sumed to be equal to 0.2 as in previous studies (Weber and Brown, 1989; Trasorras et al., 1989; Shima and
Saleh, 1993) and its reliability was verified by comparing simulated results with experimental measurements
as discussed in Section 6. Both contact conditions were modeled using the ‘‘master-slave’’ contact pair

Fig. 4. Boundary regions identified by user developed macro-functions.

Fig. 3. Integrated simulation module.
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formulation of ABAQUS (HKS, 1995b). This formulation requires the association of the master surface with
the stiffer interacting body (tooling component) whereas the slave surface is associated with the second
deformable body (powder cavity). IDEQUS automatically identifies, generates and pairs off contact surfaces
using the element sets selected by the macro functions.

All the information is written to a universal FE file which is then completed with additional information
and then translated into the ABAQUS format by way of the IDEQUS program. This tool also permits to:

• Define powder and tooling material parameters as well as friction coefficients.
• Prescribe the displacement sequence of each tooling component.
• Define the solution control parameters.

4.3. Processing and post-processing

ABAQUS is a FE solver capable of handling both geometric and material nonlinearities, as well as the
frictional contact nonlinearities. One of its main advantages is the open facility it offers for the definition of
user material models. In fact, the cap material model was implemented into ABAQUS via the UMAT facility
that allows the user to define a constitutive model and implement its numerical integration algorithm as a
Fortran subroutine (HKS, 1995b). Thus, UMAT is called by the main program at each element integration
point within every equilibrium iteration of each load increment of the deformation process. The global FE
problem was solved using the classical Newton–Raphson method with a line-search algorithm whereas the
local material integration was handled by the closest point projection algorithm (Simo, 1992; Koopman
et al., 1992).

Finally, the ABAQUS-Post software (HKS, 1995a) is used mainly for the visualization of the predicted
density maps within the compacts. The stress distribution, as well as the deformed shape of the tooling
components, could also be post-processed by the same software.

5. Industrial application

5.1. Scope

In this section, a typical compaction case study is presented in order to illustrate the industrial use and to
assess the predictive capabilities of the simulation module. The studied part is a three level axisymmetric
part, made from the previously characterized 316L stainless steel powder and produced on an industrial
basis (Fig. 5). It is compacted in a 250 t hydraulic press using a rigid die and a set of two upper and three
lower punches, all made from tool steel.

Since the studied part production started before the simulation module had become operational, the use
of this module was not for predictive purposes but for:

• the validation of simulation results;
• and for the investigation of part cracking problems.

First, we start by the simulation of the part compaction as it is performed in the production press. Then,
the obtained density distribution is to be validated by comparing it with a second distribution obtained by
the developed experimental technique. Finally, in order to solve the part cracking problem, the module is
used for investigating the effects of change in the compaction sequence on the density gradient in the
compact.
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5.2. Data modeling

The data set required for the modeling activity includes the tooling geometry, the exact position of each
tooling component at each compaction step including the filling and the pressing positions (Fig. 5) and the
powder initial density in the cavity. Due to the densification resulting from the automatic press filling, this
density is different from the apparent density given by the powder manufacturer. It should be calculated by
dividing the final compact mass by the cavity volume. For this application, the initial relative density was
38% whereas apparent density given by the manufacturer was 33%.

As shown in Fig. 6 and Table 1, the first step of the compaction sequence is a powder transfer step,
essential to press the lower (inner) level of the part. In order to avoid potential part cracking, any powder
transfer operation should be completed prior to any effective compaction step. For this reason, we con-
sidered the post-transfer position as the initial modeling position. Thus, the effective compaction sequence
consists of two steps.

5.3. Finite element mesh and boundary conditions

The powder initial geometry corresponds to the cavity shape after the powder transfer step whereas the
tooling component geometry were simplified since no tooling stress analysis is involved in this study.
Moreover, since lower punches 1 and 2 move in unison after powder transfer, they have been modeled as a
single punch named ‘‘lower punch 1’’. ABAQUS CAX4 four node axisymmetric element (HKS, 1995b) was
used to mesh the geometrical models of the tooling components as well as the powder cavity (Fig. 7).

Fig. 6. Tooling and pressing sequence.

Fig. 5. Part geometry.
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Ideas user’s defined macro functions were implemented and used to identify specific interaction and
boundary condition regions. IDEQUS was subsequently used to prescribe the boundary conditions for the
analysis steps corresponding to the two sequence compaction steps. The friction coefficient between powder
and tool sides was taken to be equal to 0.2 as in previous studies.

5.4. Results

The two-step FE problem was solved by ABAQUS with a relatively small number of increments for each
one of the steps. In fact, only four increments were needed for each of the loading steps. In addition, the
global Newton–Raphson solution scheme, as well as the local implementation scheme of the cap model,
behaves very well. In fact, the number of global equilibrium iterations per increment ranged between 2 and
4. Besides, an average number of 7 local iterations were needed for the material integration algorithm at
each global equilibrium iteration. The obtained density distribution is presented in Fig. 8.

In order to validate the simulation results, an experimental density map, presented (Fig. 9), was obtained
by the method based on the correlation with Vickers hardness measures. 1 Globally, agreement between

Fig. 7. Initial mesh and boundary conditions of the three-level part.

Table 1

Tooling positions

Tool Positions

Filling Transfer Interm. pressing Final

Upper punch 1 0 �26.6 �28.5 �28.5

Upper punch 2 0 0 �17.5 �17.5

Lower punch 1 �5 �31.6 �31.6 �31.1

Lower punch 2 �31.6 �31.6 �31.6 �31.1

Lower punch 3 �5.9 �5.9 �18.5 �18.5

1 The inner level of the part was too weak to resist during the metallographic preparation procedure.
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simulated and experimental maps is within the density range of 1%, which is the accuracy of the experi-
mental method (Guillot and Chtourou, 1996). This validation confirmed the high density gradient in the
lower region of the part which constitutes a serious quality problem.

5.5. Improving part quality

As may be seen from the simulation and the experimental results, the compaction sequence used for this
part led to a huge density gradient in the inner corner region. This gradient is very likely responsible of the
noticed part cracking. Part quality could easily be improved by balancing the compaction sequence. This
could simply be done by slightly increasing the filling height of the inner level together with an additional
compaction of this region using upper punch 1. Furthermore, the compaction sequence could be simplified
by using a single step instead of the two-step sequence. This solution was investigated by way of simulation
featuring a new compaction sequence (Table 2) leading to the same final dimensions of the compact.
Simulation results (Fig. 10) show that this new sequence effectively leads to a more homogeneous and
stronger compact. Since results of this figure were intended to illustrate the use of the integrated module in
compaction design and not to serve as model validation tests, no corresponding experimental results were
obtained.

Fig. 8. Final shape and density distribution.

Fig. 9. Experimentally obtained density distribution.
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6. Conclusion

In the first (Chtourou et al., 2001) of a series of two papers on PM, the problem of experimental
characterization of the material model for the 316L stainless steel powder was addressed together with its
experimental validation procedure.

In this second part, computational aspects are addressed based on the FE simulation approach in an
integrated simulation environment for industrial application. The problems of rigid die compaction of
ductile metal powders involves material, geometric as well as boundary conditions (frictional contact)
nonlinearities. While the last two nonlinearities were handled automatically by the ABAQUS FE solver, the
first involve a material model unavailable in ABAQUS and hence the elastoplastic cap model had to be
formulated and integrated into the software in order to be able to simulate the behavior of the metal
powder medium. The closest point projection algorithm was used for the numerical integration of the
multisurface plasticity model. Due to its flexibility and capacity to represent all the compaction stages, the
cap material model was shown to yield very good results as far as the final density was the main concern
and despite the fact that the model was not completely characterized. This is however expectable since the
final density is mainly sensitive to the cap hardening parameters which seem to have been correctly iden-
tified. Since however no data was available about the shear failure mode the present model parameters
cannot correctly simulate the ejection phase and associated residual stresses.

Finally, an integrated simulation environment has been developed and the simulation of the compac-
tion of an industrial PM part has been performed successfully thus demonstrating the practical indus-
trial applications of the computational approach. This application illustrates the modeling activity
tasks and demonstrates the accuracy and the numerical efficiency of the implemented computational
algorithms.

Fig. 10. Simulation results obtained using the modified sequence.

Table 2

Tooling positions according to the modified compaction sequence

Tool Positions

Filling Transfer Final pressing

Upper punch 1 0 �25.6 �29.5

Upper punch 2 0 0 �17.5

Lower punch 1 �6 �31.6 �31.1

Lower punch 2 �31.6 �31.6 �31.1

Lower punch 3 �5.9 �5.9 �18.5
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Further studies are still underway and concern the construction and calibration of a triaxial testing
machine aimed at the gathering of the missing data (especially for the failure mode) or incomplete data on
elastic behavior at low density levels. Also adjustment of material parameters through optimal parameters
identification and inverse modeling process is considered. This will be applied in order to get rid of the
current hypothesis of uniform deformation used in extracting material parameter values from the experi-
mental measurements.
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Appendix A. Derivation of the algorithmically consistent tangent moduli of the cap model 2

A.1. Case 1: Perfect plasticity

The first variation of the plastic strains is given by

depnþ1 ¼
X
i

dðDkiÞ
ofi
or

�
þ Dki

o2fi
or2

: dr

�
ðA:1Þ

When combined with Eq. (21) the above relation gives

drnþ1 ¼ N : denþ1

 
�
X
i

d Dkið Þ ofi
or

!
ðA:2Þ

where

N�1 ¼ C�1 þ
X
i

Dki
o2fi
or2

ðA:3Þ

This tensor could be inverted numerically or analytically using the Sherman–Morrison method (Hof-
stetter et al. 1993). This method is privileged since it is numerically cheaper. Furthermore, the plastic
consistency parameters Dki are obtained by use of the normality condition of each of the active yield
functions:

dfi ¼
ofi
or

: dr ¼ 0 ðA:4Þ

Using this relation and Eq. (A.3), one can define the following equation system in which Dki are the
unknowns:X

i

ofj
or

: N :
ofi
or

d Dkið Þ ¼ ofj
or

: N : de ðA:5Þ

2 Subscripts i and j refer to the active yield surfaces.
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This system can be more conveniently expressed as follows:

X
i

gjid Dkið Þ ¼ ofj
or

: N : de ðA:6Þ

where

gji ¼
ofj
or

: N :
ofi
or

ðA:7Þ

which permits the determination of the plastic consistency parameters:

d Dkið Þ ¼
X
j

g�1
ij

ofj
or

: N : de

� �
ðA:8Þ

Finally, the integration of this last relation into Eq. (A.3) we can express the elastoplastic tangent moduli
as

drnþ1

denþ1

¼ N �
X
i

X
j

g�1
ij N :

ofi
or

�
� N :

ofj
or

�
ðA:9Þ

A.2. Case 2: Hardening plasticity (cap mode)

Since the yield function of the cap mode involves the hardening parameter k, the first variation of plastic
strains is given by

dep ¼ dðDk3Þ
of3
or

þ Dk3

o2f3
or2

: dr

�
þ o2f3
orok

: dk
�

ðA:10Þ

Incorporating Eq. (A.10) into Eq. (21), and using the same tensor N defined by Eq. (A.3), one can obtain:

dr ¼ N : de � N :
of3
or

dðDk3Þ � Dk3N :
o2f3
orok

dk ðA:11Þ

In addition, the derivation of cap yield function relatively to its two independent variables gives:

df3 ¼
of3
or

: dr þ of3
ok

: dk ¼ 0 ðA:12Þ

Furthermore, in order to completely define the problem we should introduce the incremental form of the
hardening law (Eq. (A.13)) as well as its derivative (Eq. (A.14)):

1

3
DIpðkÞ � Dk3

of3
oJ

¼ 0 ðA:13Þ

1

3

d DIp kð Þð Þ
dk

dk � d Dk3ð Þ of3
oJ

� Dk3 �
o2f3
oJ or

: dr

�
þ o2f3
oJ ok

: dk
�

¼ 0 ðA:14Þ

Finally, this last relation combined with Eq. (A.12) in which Eq. (A.11) is inserted, gives the expression
of tangent moduli:

drnþ1

denþ1

¼ N �
X
i

X
j

a�1
ij N :

of3
or

�
� N :

o2f3
orok

�
ðA:15Þ
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where subscripts i and j do not refer any more to active yield surfaces but simply takes the values 1 and 2
and where coefficients a�1

ij are the components of the inverse of matrix a defined by:

a11 ¼
of3
or

: N :
of3
or

ðA:16aÞ

a12 ¼
of3
or

: N :
o2f3
orok

� 1

Dk3

of3
ok

ðA:16bÞ

a21 ¼
o2f3
orok

: N :
of3
or

þ 1

Dk3

of3
oJ

ðA:16cÞ

a22 ¼
o2f3
orok

: N :
o2f3
orok

þ 1

Dk3

o2f3
oJ ok

� 1

3Dk2
3

oðDIpðkÞÞ
ok

ðA:16dÞ
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